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Supplementary Figures and Tables 

 
 

 
 
 
Supplementary Figure S1. Schematic representation of FLAME dataflow. In this 
flowchart, we outline the dataflow for FLAME’s computational pipeline beginning with 
the raw flow cytometric data files (in .fcs format) for all the samples and ending with the 
assignment of their components to metaclusters. At each stage of the process we indicate 
what external analyses or visualizations can be done with the intermediate data (output 
files). FLAME processing steps are noted in salmon, external functions are noted in 
turquoise.   
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Supplementary Figure S2. Expression values for the HLA-DQ and CD95 markers in 
a representative lymphoblastic cell line indicate unimodal distributions of 
expression for either marker. In plot (a), the empirical cumulative distributions of the 
two dimensions are plotted: HLA DQ in blue and CD95 in orange. The smooth ascent of 
both distributions from 0 to 1 is indicative of unimodal density of expression for either 
marker.  
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Supplementary Figure S3. Meta-clustering of cell populations across 29 subjects 
measured before and after T cell receptor stimulation. Results of FLAME’s use of 
PAM to match subjects’ clusters across the cohort. First, the pre- (yellow) and post- 
(purple) stimulation modes for each cohort were metaclustered independently – each 
cohort yielding five populations. Next, the corresponding metaclusters between the two 
classes were identified. In the figure, all modes from all subjects are overlaid to illustrate 
the five subpopulations and the difference in phosphorylation after stimulation. 
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         Red – high value  
         Blue – low value 
 
 
Supplementary Figure S4. Classifying pre- and post-stimulation samples by 
distinctive mixture model features. The heat map, based on the results of a feature 
selection exercise using paired t test across pre- and post-stimulation classes, shows a set 
of features that are most distinctive across the pre- and post-stimulation samples. Each 
column of the heat map represents one of the 58 samples interrogated in this experiment, 
and each row presents data from one of the top 50 discriminating features. The pre-
stimulation samples (0 minutes, yellow subset) are depicted on the left half of the heat 
map and the post-stimulation samples (5 minutes, purple subset) on the right. Features 
with high pre-stimulation (red) and low post-stimulation values (blue) in general are 
observed in the upper half of the heat map. The lower half of the heat map contains those 
features with the opposite pattern of changes in parameters. For details about the selected 
features, see Supplementary Table T1. 

  

zero-minute five-minute 

Pre-stimulation Post-stimulation 
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Supplementary Figure S5. Different choices of probability density functions in 
FLAME. The forms of t, skew normal and skew t densities are plotted in violet, blue and 
red respectively. The standard normal (or Gaussian) density plot in green is also included 
for reference. In this example, all densities have location parameter 0; skew t and skew 
normal have skew shape parameter equal to 1; skew t and t have one degree of freedom. 
Although FLAME uses multivariate distributions, we show univariate forms in this plot 
for convenient visualization. 
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Supplementary Figure S6. Mixture modeling with different distributions.  Here we 
fit a skewed one-dimensional intensity distribution (unpublished data, from M.G. Kharas 
and D.G. Gilliland) with (a) normal, (b) skew normal, (c) t and (d) skew t mixture models 
plotted in green, blue, violet and red respectively. While all four distributions yield 2-
component univariate models, skew t provides the best fit to the actual distribution. 
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Supplementary Table T1: List of the 50 most significantly distinctive features when 
comparing the pre- and post-stimulation samples of lymphocytes with anti-CD3 in 
Figure 3. A “feature” in this case is a parameter describing one property of a cell cluster 
found in the samples being investigated.  For example, the most differentiated parameter 
after anti-CD3 stimulation is “mus1.4” (P=6.12x10-22); this is the mode of the intensity in 
dimension 1 for cluster 4 (which corresponds to naïve T cells). For every feature, its ID, 
type, cluster number, dimension(s), change after 5 minutes of stimulation (mean(5)-
mean(0)) and the corresponding P-value (from paired t test across pre- and post-
stimulation classes) are reported. (A list for the terminology of parameters and statistics 
computed by FLAME is available with the software.) 
 
 

Feature ID  Feature Type Cluster # Dimension(s) mean(5)-mean(0) p-value 
mus1.4 Mean 4 1 1.761 6.13E-22 
mus1.5 Mean 5 1 1.657 2.47E-21 

vars21.5 Variance 5 1,2 0.088 6.67E-21 
mus1.2 Mean 2 1 1.571 1.52E-18 

vars11.4 Variance 4 1 -0.156 1.65E-18 
shape 7 Shape 2 2 0.682 4.49E-16 

orientation 72 Orientation 5 3 -0.649 1.01E-14 
orientation 56 Orientation 4 3 -0.609 1.13E-12 
orientation 68 Orientation 5 1 0.538 1.83E-12 

vars11.3 Variance 3 1 0.314 6.22E-12 
vars21.3 Variance 3 1,2 0.259 1.14E-11 

orientation 20 Orientation 2 1 0.504 2.17E-11 
vars21.2 Variance 2 1,2 0.251 1.22E-10 

orientation 52 Orientation 4 1 0.552 1.87E-10 
shape 10 Shape 3 3 0.740 1.31E-09 
shape 13 Shape 4 4 1.023 4.37E-09 
shape 8 Shape 2 2 -0.141 4.41E-09 

orientation 54 Orientation 4 2 0.534 1.26E-08 
shape 11 Shape 3 3 -0.175 2.62E-08 
vars21.4 Variance 4 1,2 0.060 3.42E-08 
vars11.5 Variance 5 1 -0.082 4.00E-08 
shape 15 Shape 4 4 -0.178 5.17E-07 

orientation 19 Orientation 2 1 -0.632 1.34E-06 
scale4 Scale 4 NA -0.052 3.32E-06 

vars22.3 Variance 3 2 0.146 1.09E-05 
orientation 66 Orientation 5 1 -0.515 1.37E-05 

vars41.5 Variance 5 1,4 -0.024 2.63E-05 
orientation 47 Orientation 3 4 0.561 4.65E-05 

vars22.2 Variance 2 2 0.282 5.45E-05 
shape 20 Shape 5 4 -0.060 7.93E-05 

orientation 43 Orientation 3 3 0.066 8.01E-05 
orientation 59 Orientation 4 3 0.548 1.51E-04 

vars11.2 Variance 2 1 0.131 1.62E-04 
scale3 Scale 3 NA 0.063 2.19E-04 
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vars22.5 Variance 5 2 0.023 2.65E-04 
shape 12 Shape 3 4 -0.073 4.58E-04 
vars43.3 Variance 3 3,4 -0.020 7.10E-04 
scale5 Scale 5 NA -0.038 7.23E-04 

orientation 42 Orientation 3 3 -0.422 9.73E-04 
vars42.5 Variance 5 2,4 -0.014 3.32E-03 
vars31.4 Variance 4 1,3 -0.015 3.34E-03 
vars41.2 Variance 2 1,4 0.099 3.42E-03 

orientation 70 Orientation 5 2 0.308 4.07E-03 
orientation 62 Orientation 4 4 -0.264 4.55E-03 
orientation 49 Orientation 4 1 -0.234 4.87E-03 

vars22.4 Variance 4 2 -0.028 1.98E-02 
orientation 35 Orientation 3 1 -0.267 2.23E-02 
orientation 31 Orientation 2 3 -0.040 4.46E-02 

shape 19 Shape 2 1 -0.231 4.89E-02 
orientation 32 Orientation 2 4 -0.030 5.06E-02 
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Supplementary Methods 

 
Details of the datasets presented in the manuscript 

The three datasets were generated as part of other efforts. Here, we present the pertinent 
references and summarize the key details to provide the biological context of each 
experiment as well as the manner in which data were generated and handled prior to 
upload into FLAME. In each case, compensation was performed at the time of data 
collection on each flow cytometer.  
 

1. Lymphoblastic cell line data. 194 LCLs – each generated from a different 
individual - were cultured in three batches and stained with anti-HLA DQ and 
anti-CD95 antibodies as described in detail in a recent manuscript (D. Altshuler, 
personal communication). In brief, data on up to 5000 cells (minimum 500 cells) 
were captured by a BD Biosciences FACSCalibur system, and a .fcs file was 
generated for each cell line. This file was first pre-processed with FLAME using 
the forward scatter (FSC, cell size) and side scatter (SSC, cell granularity) 
dimensions of information to resolve the population of live cells from dead cells 
and cellular debris that are found in all cell cultures. Data on the population of 
live cells were then saved into a new .fcs file and processed in the standard 
manner described in the methods section of the main text: the data underwent a 
logicle1 transformation prior to being uploaded into the FLAME software for 
modeling.  

 
2. Regulatory T cell data. In this dataset, a sample of peripheral blood was 

processed using Ficoll extraction to segregate PBMCs2. PBMCs were then 
stained with fluorophore-labeled antibodies against CD4, CD25, HLA DR, and 
Foxp3 as described elsewhere2. Data were then captured using a BD Biosciences 
FACSAria system. Flowjo3 was then used to project the data in the FSC and SSC 
dimensions, and a human operator gated the live PBMC cells and saved the 
reduced dataset into a *.fcs file.  A Logicle transformation was then applied to 
these data before uploading into FLAME.  

 
3. T cell phosphorylation data. These data have been previously published, and a 

detailed description of the generation and processing of these data is presented 
elsewhere 4. In brief, Maier and colleagues captured data on whole blood stained 
with fluorophore-labeled antibodies against CD4, CD45RA, SLP76 (pY128)  and 
ZAP70 (pY292) before and after stimulation with an anti-CD3 antibody. For 
each subject, one blood sample was stained prior to anti-CD3 stimulation in 
whole blood. A second sample was stained 5 minutes after stimulation. Data 
were captured using a BD Biosciences FACSCalibur system. The .fcs files were 
then pre-processed using Flowjo3, and the operator gated the lymphocyte 
population of each sample. This reduced dataset was then used to generate 
parameters for the different cell populations under study. To enable a comparison 
of FLAME with these manual results, we generated a .fcs files that contained the 
cells found within the lymphocyte gate defined by the manual operator. Data in 
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these files then underwent logicle transformation before being uploaded into the 
FLAME software. 
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Details of the FLAME mixture modeling 

Finite mixture models have been extensively developed and widely applied to clustering, 
classification, density estimation, and pattern recognition problems, as shown by 
McLachlan and Basford5, McLachlan and Peel6, and Frühwirth-Schnatter7, and the 
references therein. Although Gaussian mixture modeling has enjoyed widespread use in 
numerous past applications, the tails of the Gaussian distribution are often found to be 
shorter than required in the presence of outlier events. In recent years the use of finite 
mixture of t densities has steadily gained acceptance for providing robust modeling based 
on the properties of the t distribution6, 8. Also of recent origin, the multivariate skew 
normal and skew t distributions have been shown to be beneficial in dealing with 
asymmetric data in various theoretical and applied problems9-11. The distributional 
properties and stochastic representations of multivariate skew normal and t models are 
detailed in Gupta12 and Gupta et al.13. Some extensions of skew normal and t models are 
discussed in Azzalini et al.14 and Sahu et al15. 
 
In many applied problems the contours of the clusters may be distorted, and inferences 
based on symmetric normal or t mixture models can be misleading when the data involve 
highly asymmetrically distributed observations. In particular, the normal/t mixture model 
or its generalized version16 tends to split and produce many clusters spuriously, as 
additional components are needed to accommodate the skew and asymmetry in the data. 
An increase in the number of pseudo-components can lead to difficulty in interpretation 
of results as well as cause inefficient computation. To address these situations, mixtures 
of multivariate skew normal/t distributions are required; however the use of EM 
algorithms for multivariate skew normal/t mixture models has been very limited in the 
literature because of the complexity of their implementation.  
 
Only recently, Lin et al.17 and Lin et al.18 have proposed univariate skew normal and skew 
t mixture models. Our paper is the first to use mixtures of multivariate skew t components. 
The complete-data framework for the EM algorithm for this problem does not 
automatically translate into a manageable multivariate version. In particular, the 
conditional expectations on the E-step can no longer be carried out in closed form, and 
then the equations on the M-step cannot be solved by extending the methods used to 
solve iteratively the univariate equations. We circumvented these problems on the E- and 
M-steps by proposing a new EM framework in which to implement the EM algorithm by 
adopting a different characterization of the multivariate t-distribution, namely a variant of 
the one proposed in Sahu et al15 (Canadian J Stat., 31, 129-150 (2003)). This allowed us 
to effect the E-step in closed form and to provide a set of equations on the M-step that 
can almost be solved in closed form apart for the one for the component-degrees of 
freedom. Below we give the details of our multivariate skew t mixture modeling 
algorithm, preceded by the alternate modeling options in FLAME, the multivariate t and 
skew normal mixture models. 
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Multivariate t Mixture Model 
 
The multivariate t distribution: As explained in McLachlan and Peel6, the multivariate 
t distribution can be characterized as follows. For a fixed scalar , suppose that 

, which is a multivariate normal distribution with mean vector , and 
covariance matrix . If we assume  follows a gamma distribution, 

gamma , then the unconditional distribution of Y defines the multivariate t 
distribution with location parameter , positive definite scale matrix , and degrees of 
freedom  (ν>2), which is given by 

                            (1) 

where  denotes the Mahalanobis squared distance between y and 
 with  as the scale matrix. For the multivariate t distribution, it can be shown that the 

mean and covariance matrix are given by , .                       

 
The multivariate t mixture model: With a mixture model-based approach for 
unsupervised learning, the k-dimensional observed-data points (often called feature 
vectors) Y1,…,Yn  are assumed to have come from a mixture of g components in some 
unknown non-negative mixing proportions p1,… pg which sum to one. The number of 
components in this mixture model corresponds to the number of clusters to be imposed 
on the data. A common practice is to use component distributions belonging to the same 
parametric family, in this case, the multivariate t distribution (1). In this case, each 
feature vector is taken to be a realization of the mixture probability density function  

                                       

where  denotes the hth k-dimensional t component with location parameter 
, scale matrix , and degrees of freedom . The vector of unknown parameters is 

denoted by Ψ and can be estimated by the maximum likelihood (ML) method via the 
EM19.  
 
The EM algorithm: For application of the EM algorithm, the observed-data vector 

is regarded as incomplete. Using the representation of the multivariate t 
distribution (1), we include  as an unknown “latent” variable where, conditional on the 
yj’s and membership of the hth component, the distribution of Yj can be taken to be 
multivariate normal with mean and covariance matrix /  (h=1…g). 

The component-label indicator variables  are introduced, where  is defined to be 
one or zero based on whether  did or did not arise from the hth component of the 

mixture model (h=1,...,g; j=1,...,n). Letting , the complete-data vector 
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 is given by , where  are taken 
to be independent and identically distributed with z1,…,zn being independent realizations 
from a multinomial distribution consisting of one draw on g categories with respective 
probabilities . That is,  

, where .  

For this specification, the complete-data log likelihood is  

 

The EM algorithm proceeds iteratively in two steps: E step and M step.  

The E step comprises of computing the following conditional expectations, using the 
current fit for the vector of unknown parameters Ψ: 

, 

, 

while the M step updates the estimates of the parameters, using the equations  

, 

, 

. 

The E and M steps are alternated repeatedly until the likelihood changes by a predefined 
arbitrarily small amount and the process has reached convergence. 
 
 
Multivariate Skew Normal Mixture Model  
 
The multivariate skew normal distribution: As developed by Azzalini9, 11, a random 
variable Y follows a univariate skew normal (SN) distribution with location parameter ξ, 
scale parameter σ2 , and skewness parameter λ if it has the density 

                                                        

where  and denote the density function and cumulative distribution function, 
respectively, for  the standard normal distribution; then, for brevity, we say that Y~SN(ξ, 
σ2 , λ). Note that if λ = 0, the density of Y reduces to the N(ξ, σ2) density. 
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A k-dimensional extension of (1) is given in Azzalini and Dalla Valle11. It was 
constructed via a transformation method as follows: U=(U1,…,Uk)T~ Nk(0, Ξ) with 
standardized marginals, independent of U0~N(0,1); if (δ1… δk) are in (-1, 1),  define 

  (j=1,…,k).  Then the vector Y=(Y1,…,Yk)T has a k-dimensional 
skew normal distribution with density function 

                                             (2) 
where  is the density function of the k-dimension normal distribution with 
mean ξ, and covariance ; α and  are functions of (δ1,…, δk) and Ξ 11. An alternative 
definition was discussed in Gupta and Chen13.  
 
Now we come to our definition of the multivariate skew normal distribution. Note that Ξ 
is the correlation matrix of U, when standardized. In practice, the means and 
variances/covariances are typically the main interest of the analysis. To extend (2) to a 
general situation where U is defined with its location parameter (mean) ξ, and scale 
matrix , we proceed similarly as in Sahu et al.15. Let δ  be a k-dimensional vector, 
U=(U1,…,Uk)T ~ Nk(ξ, ), U0~N(0,1), then  defines a variant of the skew 
normal distribution (2) with its density function equal to 

,                         (3) 
 
where , . 
 
Note that in the definition of Y in Sahu et al.15, the random coefficient of each element of 
δ  is allowed to be different. 
 
For the multivariate skew normal distribution (3), we provide the first two moments. 
These are obtained from the moment generating function  

 .  

The derivation of this equation is similar to that of Sahu et al.15. The mean and covariance 

matrix are given by  and .                                                

 
The multivariate skew normal mixture model: Like earlier, we assume the component 
distributions belong to the same parametric family, in this case, the skew normal 
distribution (3). Using similar notation as above, the mixture probability density function 
is denoted by  

,                                       

where denotes the hth k-dimensional skew normal component with 
location parameter , scale matrix  and skew parameter . The vector of unknown 
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parameters is denoted by Ψ and can be estimated by the maximum likelihood method via 
the EM algorithm 19. Recently the model has also received attention from other groups20. 
 
The EM algorithm: Again we re-use much of the earlier notation here. For application 
of the EM algorithm, the observed-data vector is regarded as being 
incomplete. Using the representation of skew normal distribution (3), we include v as a 
latent unobservable variable. The component-label indicator variables  are also 
introduced, where  is defined to be one or zero according to if  did or did not arise 
from the h th component of the mixture model, (h=1...g; j=1...n). 
Letting , the complete-data vector  is given by where 

 are taken to be independent and identically 
distributed with z1,...,zn being independent realizations from a multinomial distribution 
consisting of one draw on g categories with respective probabilities . That is,  

, where .  

For this specification, the complete-data log likelihood is  

 

The EM algorithm proceeds iteratively in two steps: E-step and M-step.  

The E step comprises of computing the following conditional expectations, using the 
current fit for the vector of unknown parameters: 

, 

, 

, 
, 

, 
while the M step updates the estimates of the parameters, using the following  
equations: 

, , 

, 
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. 

The E and M steps alternate repeatedly until the likelihood changes by a predefined 
arbitrary small amount, at which stage the process is deemed to have reached 
convergence. 
 
 
Multivariate Skew t Mixture Model  
 
The multivariate skew t distribution: We proceed similarly as in the case of the skew 
normal distribution, and again adopt the approach of Sahu et al.15. We let δ be a k-
dimensional vector, and suppose that conditional on w,  

, 

where gamma .  
 Then defines a skew t distribution with its density function as 

,                       (4) 

where 
, , ,  

Here is the density function of a k-dimensional t distribution with degrees of 
freedom v(>2), location parameter ξ, and scale matrix , and is the distribution 
function of a univariate (central) t random variable with v degrees of freedom.  
 
The multivariate skew t mixture model: We consider mixture of distributions whose 
component distributions belong to the same parametric family, in this case, the skew t 
distribution (4). Using similar notation as above, the mixture probability density function 
is denoted by 

    

where  denotes the hth k-dimensional skew t component with location 
parameter , scale matrix , skew parameter  and degrees of freedom . The 
vector of unknown parameters is denoted by Ψ and can be estimated by maximum 
likelihood via the EM algorithm19, 21. 
 

The EM algorithm: For application of the EM algorithm, the observed data vector 
is regarded as incomplete. Using the representation (4) of the skew t 

distribution, we include u and w as latent unobservable variables. The component-label 
indicator variables  are subsequently introduced, where  is defined to be one or 
zero according to if  did or did not arise from the hth component of the mixture model, 
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(h=1,...,g; j=1,...,n). Letting , the complete-data vector  is therefore 

given by  where … are 
assumed independent and identically distributed with z1,...,zn being independent 
realizations from a multinomial distribution consisting of one draw on g categories with 
respective probabilities . Here and . For 
this specification, the complete-data log likelihood is  

 

, 

where 

   

and 

 

    

   . 

From the above decomposition, to maximize the Q function of the complete-data log 
likelihood (McLachlan & Krishnan, 2008), we only need to maximize the functions of  
and (h=1,2,…,g) separately.  

In order to implement the E-step, we calculate the following five conditional expectations, 
namely, 

, , , 

, and .  

These expectations can be calculated using the results that 
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, 

= , 

)= , 

= .  

The M-step of the EM algorithm maximizes the Q-function of the complete-data log 
likelihood on each iteration. It follows that the updated estimates of the parameters so 
obtained on the (r+1)th iteration satisfy 

, 

,  

 

            , 

, 

.                    (5) 

The E and M-steps are alternated repeatedly until the likelihood changes by an arbitrary 
small amount in the case of convergence. 
 
Singularity problem: As the scale matrices are unconstrained, it is important to consider 
the problem of relatively large local maxima that occur as a consequence of a fitted 
component having a very small (but nonzero) generalized variance (the determinant) of 
the covariance matrices. Such a component converges to a cluster containing a few data 
points either relatively close together or lying in almost a lower dimensional subspace in 
the case of multivariate data. 
 
Methods to estimate the degrees of freedom: The solution of equation (5) for the 
updated estimate of the degrees of freedom for the hth component does not exist in closed 
form. We provide three options for its computation. With the first option, we use an 
approximation to the term on the right-hand of equation (5). With the second option, 

the term is calculated by truncating an infinite series expansion of it. Finally, for the 
third option, we do not estimate the degrees of freedom for the components, but instead 
we specify their values beforehand. A comparison of the three options in some simulation 
experiments suggest that Option 1 (which is quicker) performs not too far short of Option 
2, which attempts to provide the exact values at each stage of the iterative process. 
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Model selection criteria 

To determine the optimal number of components (g*) in the mixture model, FLAME uses 
by default a novel Scale-free Weighted Ratio (SWR) criterion (for details see Methods, 
main text). The more commonly used unweighted ratio of average intra- to intercluster 
distances does not distinguish between the distinct scale variances of different 
components or between outlier and non-outlier cells. SWR addresses this with the 
following strategies: first, Mahalanobis distance is used since it normalizes Euclidean 
distance by the scale variance of the distribution of points, thus it is independent of 
dispersion levels that vary from one population to another. Also, Mahalanobis distance 
has the desirable property of being invariant to all non-singular transformations. Second, 
by using the posterior probabilities as weights, it restricts the influence of outlier cells on 
the determination of the optimal number of populations. The combined effect of these 
two strategies allows SWR to perform robust and accurate model selection. An 
unweighted version of SWR, which is average Intracluster Euclidean distance to average 
Intercluster Euclidean distance Ratio (IIR), is another option that is available in FLAME:  

  (6) 

where  is the Euclidean distance between two points  and . Note that IIR is a 
special case of SWR, which assumes all scale variances and posterior probabilities to be 
equal. It allows faster computation and is suitable for very large samples with well-
separated clusters. 
 
FLAME also computes the Akaike Information Criterion (AIC), the Bayesian 
Information Criterion (BIC) and Integrated Completed Likelihood (ICL), which are 
available as alternate criteria for model selection. For these information criteria, we 
choose optimal number of components g* by considering the likelihood function. In the 
absence of any prior information as to the number of clusters present in the data, we can 
monitor the increase in log likelihood function as the value of g increases. At any stage, 
the choice of g = g0 versus g = g0 + 1 can be made by either performing the likelihood 
ratio test or by using some information-based criteria such as AIC or BIC. Unfortunately, 
regularity conditions do not hold for the likelihood ratio test statistic λ to have its usual 
null distribution of χ2 with degrees of freedom equal to the difference d in the number of 
parameters for g = g0 +1 and g = g0 components in the mixture model. With information 
criteria such as AIC and BIC, we choose g = g0 + 1 over g = g0 if −2log(λ) is greater than 
cd, where, corresponding to the use of AIC and BIC, c is equal to 2 and log(n), 
respectively.  The ICL attempts to improve the performance of AIC and BIC by replacing 
d log(n) in the use of BIC by d log(n) + 2 , where  is the plug-in estimate of the 
entropy, which is given by  

 (7) 

where  is the posterior probability that the jth data point belongs to the hth component 
of the mixture (h=1,…,g; j=1,…,n); see McLachlan and Peel (2000; Chapter 6). To 
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choose between one or more than one components, FLAME uses BIC as the default 
criterion since intercluster distances, as in SWR, are not defined for one component. In 
summary, the different model selection criteria that are offered by FLAME are as follows: 
SWR (by default), IIR, BIC, AIC and ICL. 
 
 



 21 

Metaclustering 

Details of Metaclustering Method 
 
As outlined in the Methods section of the paper, we developed a novel 2-step strategy to 
match corresponding populations across samples. 
 
Step 1: PAM clustering – In this step, we do robust clustering of the samples within a 
particular class to generate a high-dimensional template marking the typical locations and 
weights (i.e. proportion of cells) of the populations of that class. The clustering is done 
with PAM22, which is a robust version of the k-means algorithm, and the resulting typical 
populations for that class are called metaclusters. A metacluster’s location is given by the 
corresponding PAM medoid. A metacluster’s weight is given by median size of the c 
clusters that are nearest to its location and belong to it c is, by default, set to 20% of the 
number of clusters in a metacluster). The optimal number of metaclusters in the template 
is determined by average silhouette width23.  
 
Step 2: Bipartite Matching – In this step, we take a graph optimization approach to solve 
the metaclustering problem by optimally matching every sample to its class-template 
computed in step 1. For this purpose, we model the problem as an enhanced version of 
the minimum cost bipartite matching problem from graph theory24, which we describe 
below.  
 
A bipartite graph G = (S, T; E) consists of two disjoint sets of nodes S and T and a set E 
of node-pairs, or edges, such that for every edge (s, t) in E one node (s) is from S and the 
other (t) from T in which case we say that the nodes s and t are “matched”. Also, every 
edge (s, t) can have a cost of matching  associated with it. Further, we also define the 
capacity of a node, denoted by  or  for s∈S and t∈T,  and require that for a node 
(say s∈S) that is matched to one or more nodes (say ), their capacities should also 
“match”, i.e. . To allow approximate matching of capacities, the latter 

condition may be relaxed as  for a pre-specified small value ε. 
 
We formulate metaclustering as finding a minimum cost bipartite matching problem 
following additional capacity matching constraints. As stated above, within-class 
metaclustering involves matching a sample’s modes (S) with the template (T) of that class 
specified by metacluster locations (the PAM medoids), while cross-class metaclustering 
involves matching the templates of two classes. We use the within-class Euclidean 
distance between a mode s and a medoid t as the cost function dst and the corresponding 
weights ps and qt as the node capacities for S and T.  
To solve the above constrained bipartite matching problem, we use the following integer 
programming (IP) formulation: given the distances dij for all mode-medoid pairs and the 
capacities  and  for all modes and medoids respectively, we want to compute the 

optimal matching, represented by binary variables such that  if and only 

if mode i is matched to medoid j, as a solution to the IP: 
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where ε is a pre-specified constant (by default set to 0.05) that allows approximate 
matching of node capacities. 
 
By default, we run the IP solver lpSolve25 with all the constraints (9a-10b) mentioned in 
the formulation. However certain constraint-relaxations can allow optimal matchings 
when no feasible solution might exist for the default formulation. For instance, the 
removal of the constraint (10a) allows one or more template medoids to be left 
unmatched (for instance, to allow detection of a missing population in a sample); the 
removal of constraints (9a)-(9b) allows the node capacities to be ignored and then the 
matching is purely based on distances between the modes and the medoids.  
 
For cross-class metaclustering, we first apply bipartite matching to the templates of the 
two compared classes and then extend the matching from the templates to the samples 
based on the results of within-class matching as described above. 
 
When called from our R program, the IP solver lpSolve performed all computations for 
the present application efficiently, e.g. for metaclustering 20 samples in a typical run in 
the simulation study in Part IV.b, the average running time was 0.393 sec with a standard 
deviation of 0.023 sec). The IP solver is capable of handling up to 100 modes or medoids, 
which makes our metaclustering algorithm scalable for samples with large number of 
populations.  
 
 
Assessment of Metaclustering Stability 
 
Simulation experiment design: To demonstrate the stability of the new 2-step 
metaclustering method, we performed 100 metaclustering runs, or trials, each with an 
input of a subset of samples drawn randomly, without replacement, from a pool of real 

Minimize     (8)    

subject to the following constraints 
 

 for all   (9a) 

 for all   (9b) 

 for all   (10a) 

 for all    (10b) 

 for all ,  (11) 
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flow cytometric data. We observed that our metaclustering algorithm yielded consistent 
results across 99/100 trials.  
 
The dataset consisted of the 30 samples from our T cell phosphorylation dataset (see 
Supplementary Methods, above) that were collected 5-minute after anti-CD3 stimulation. 
Each sample was collected from a different individual, but they all belong to the same 
phenotypic (post stimulation) class. Prior to metaclustering, each sample was modeled 
with multivariate skew t distributions over a range of 4-6 clusters, and the optimal 
number of clusters was selected using the SWR criterion. During each trial, 20 of the 30 
samples were selected at random, without replacement, to participate in the 
metaclustering. 
 
During each trial, metaclustering was performed as described in the Methods section (see 
main text). The range of metacluster count was taken to be 5-6, since the optimal g of 
each sample at the end of clustering was either 5 or 6. The optimal number of 
metaclusters was determined by maximizing the average silhouette width23 (ASW).  
 
Results: In 99 trials, k=5 was the preferred optimal number of metaclusters. In trial #39, 
k=6 is preferred to k=5 based on ASW values that differed by 0.00052, so the two models 
were essentially equivalent in this trial. The associated average silhouette widths are 
shown in Figure 1 below. Paired t-tests showed that k=5 is preferred to k=6 by a 
difference in ASW median value of 0.0297 (P value = 4.11x10-39) rendering k*=5 as the 
optimal number of clusters for this dataset. The full table of ASW values for each trial is 
shown in Table 2 below. 
 
Because all 30 samples participating in the trials belong to the same phenotypic class, we 
expect the configurations of metaclusters to be consistent across trials. Figures 2(a)-(f) 
below are 3D projections (SLP76, CD4, CD45RA dimensions) of metacluster 
assignments of six out of the 100 trials performed, and they clearly illustrate the 
consistency of the metaclustering results.  
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Figure 1. Average silhouette widths for the k=5 and k=6 solutions to the clustering 
of random subsets of 20 samples from a pool of 30 samples. The median ASW values 
are estimated from 100 trials (black line). The box defines the interquartile range, and the 
ends of the whiskers define the lowest and highest non-outlier values (no outlier 
observed). k=5 is the optimal solution in 99 of the 100 individual trials.  
 
 

 
 
Figure 2. 3D projections of metacluster configuration in six representative trials. 
The presented metaclusters were drawn arbitrarily from the 100 trials:(a) Trial #10; (b) 
Trial #20; (c) Trial #30; (d) Trial #40; (e) Trial #50; (f) Trial #60. Each plot shows the 
metaclustering results on the pooled collection of the clusters participating in a particular 
trial. Each point represents the mode of one cluster from one individual sample. Every 
metacluster has its own distinct color and the cluster modes (represented by dots) which 
belong to it have that color.  
 
Table 1. Average Silhouette Width score for k=5 and k=6 in 100 metaclustering 
trials.  
 

Trial # k=5 k=6 Trial # k=5 k=6 Trial # k=5 k=6 Trial # k=5 k=6 
1 0.609 0.594 26 0.580 0.535 51 0.634 0.618 76 0.587 0.566 
2 0.631 0.615 27 0.631 0.606 52 0.595 0.576 77 0.599 0.572 
3 0.577 0.525 28 0.631 0.613 53 0.612 0.580 78 0.616 0.557 
4 0.621 0.604 29 0.627 0.600 54 0.619 0.599 79 0.627 0.587 
5 0.599 0.560 30 0.646 0.625 55 0.629 0.587 80 0.638 0.594 
6 0.610 0.598 31 0.600 0.584 56 0.633 0.603 81 0.631 0.609 
7 0.569 0.546 32 0.599 0.548 57 0.632 0.610 82 0.588 0.559 
8 0.589 0.568 33 0.627 0.613 58 0.605 0.572 83 0.576 0.575 
9 0.631 0.629 34 0.628 0.587 59 0.608 0.569 84 0.595 0.561 
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10 0.633 0.621 35 0.582 0.562 60 0.643 0.609 85 0.608 0.597 
11 0.609 0.568 36 0.611 0.573 61 0.616 0.581 86 0.600 0.572 
12 0.651 0.620 37 0.612 0.566 62 0.616 0.559 87 0.587 0.540 
13 0.594 0.564 38 0.575 0.556 63 0.575 0.537 88 0.615 0.570 
14 0.641 0.587 39 0.608 0.609 64 0.602 0.545 89 0.620 0.577 
15 0.577 0.559 40 0.634 0.593 65 0.589 0.545 90 0.625 0.598 
16 0.595 0.568 41 0.645 0.601 66 0.603 0.596 91 0.600 0.572 
17 0.614 0.584 42 0.578 0.567 67 0.590 0.572 92 0.601 0.576 
18 0.586 0.545 43 0.626 0.605 68 0.580 0.536 93 0.599 0.547 
19 0.602 0.569 44 0.633 0.622 69 0.596 0.568 94 0.616 0.598 
20 0.619 0.577 45 0.588 0.530 70 0.612 0.565 95 0.624 0.599 
21 0.598 0.570 46 0.623 0.586 71 0.578 0.559 96 0.616 0.563 
22 0.573 0.549 47 0.605 0.582 72 0.630 0.602 97 0.610 0.587 
23 0.647 0.614 48 0.609 0.570 73 0.610 0.580 98 0.597 0.577 
24 0.597 0.574 49 0.589 0.567 74 0.629 0.611 99 0.629 0.626 
25 0.630 0.584 50 0.618 0.576 75 0.609 0.591 100 0.596 0.557 
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Supplementary Discussion 

 
Performance Analysis 

Simulation studies were done to evaluate the time complexity of the EM algorithm for 
multivariate skew t mixture modeling that forms the core of FLAME. Factors affecting 
the total computing time of the EM algorithm include the number of observations n (a.k.a. 
sample size), the number of dimensions p, the number of clusters/populations g, and the 
total number of iterations of the EM routine. It is important to note that while the first 
three factors are pre-determined, the last one is variable for each dataset. Upon simulation, 
the computing times for the E step and the M step were recorded for each setting and then 
added together. The computing times are based on a desktop running Windows XP Pro 
(2002) with the following specifications: Intel(R) Pentium(R) 4 processor with 2.4GHz, 
504 MB of RAM.  
 
First, we observed that the time complexity is linear in the number of clusters/populations 
(g) while keeping the values of n and p fixed at 20,000 and 6 respectively (Figure 3a and 
Table 2, below). In the next simulation study, the number of EM iterations was fixed at 
50 and g at 3, and n was varied from 10,000 to 100,000 while incrementing in steps of 
1,000, and p was varied from 3 to 20. In figure 3(b), we note that for fixed number of 
n=50,000 and 100,000 observations (purple and green points respectively), the running 
time increases, in both cases, quadratically with respect to p (smoothed curve shown in 
dashed line). In figure 3(c), we note that for fixed dimension p=10 and 20 (blue and red 
points respectively), the running time increases, in both cases, linearly with respect to n. 
Notably, both trends are projections from a common set of running times (Table 3, below) 
specifying a joint trend with respect to tuple (n,p). To summarize, as is well known, the 
total computing time appears to be linear in n and g, and quadratic in p.  
 
Given the linear (for increase in numbers of populations or cells/points) and gentle 
quadratic (for increase in numbers of dimensions) trends in our performance analysis, 
FLAME scales well as we challenge it with larger and more complex datasets. In addition, 
it is worth noting that it compares favorably with a human operator: for example, it is 
able to process 50,000 cells/points belonging to 3 populations in 10 dimensions of 
information in ~2.5 minutes (See Figure 3, below).  
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Table 2. Time complexity for increasing ranges of populations to model. By varying 
the number of cell clusters (g, first row) for skew t mixture modeling of 6-dimensional 
simulated data with 20,000 points, the running time for EM (in minutes) for a given value 
of g, and the cumulative running time (in min) for the range 1 through g, are tabulated in 
the second and third rows respectively.   

g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Runtime to model 
g clusters (min) 0.22 0.42 0.63 0.84 1.04 1.25 1.46 1.66 1.9 2.1 2.31 2.52 3.11 3.13 3.39 3.63 

Cumulative 
Runtime  to 

determine optimal 
g (min) 

0.22 0.64 1.27 2.11 3.14 4.4 5.85 7.51 9.41 11.5 13.8 16.3 19.4 22.6 26 29.6 
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(a) 

 
 

  
   (b)      (c) 
 
Figure 3. Time complexity trends. Running times in minutes as a result of varying (a) 
number of populations, (b) number of dimensions, (c) number of points in an input 
sample to multivariate skew t mixture modeling. The trends appear to be linear in (a) and 
(c) and quadratic in (b). 
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Table 3. Simulation results on EM time complexity. Each entry in the table shows the 
running times (in minutes) for multivariate skew t mixture modeling of simulated samples 
with different number of points (rows) and dimensions (columns); the number of 
populations was fixed at 3. Simulations were run with increments of 1000 points, and 
results ar plotted in Figure 3. For conciseness, we present only increments of 5000 in the 
table below. 

# dimensions 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

#points  
10k 0.37 0.41 0.39 0.4 0.42 0.44 0.45 0.43 0.45 0.46 0.45 0.49 0.46 0.46 0.49 0.53 0.55 0.55 

15k 0.56 0.63 0.6 0.61 0.65 0.68 0.77 0.69 0.72 0.75 0.75 0.82 0.78 0.81 0.87 0.91 0.98 0.98 

20k 0.74 0.83 0.8 0.82 0.87 0.91 0.96 0.93 0.97 1.02 1.02 1.11 1.06 1.1 1.19 1.23 1.33 1.29 

25k 0.93 1.03 0.99 1.04 1.07 1.14 1.21 1.16 1.22 1.26 1.27 1.39 1.29 1.38 1.47 1.55 1.67 1.87 

30k 1.12 1.25 1.19 1.24 1.31 1.38 1.48 1.41 1.47 1.54 1.51 1.69 2.3 1.64 1.81 1.86 1.97 1.98 

35k 1.3 1.46 1.4 1.44 1.51 1.6 1.67 1.61 1.7 1.77 1.75 1.94 1.85 1.92 2.07 2.14 2.33 2.29 

40k 1.49 1.67 1.59 1.66 1.74 1.83 1.93 1.86 1.95 2.04 2.03 2.21 2.12 2.19 2.36 2.48 2.64 2.64 

45k 1.67 1.88 1.8 1.87 1.95 2.05 2.17 2.11 2.19 2.27 2.28 2.49 2.37 2.46 2.66 2.77 2.96 2.96 

50k 1.86 2.07 1.99 2.09 2.17 2.29 2.41 2.35 2.44 2.54 2.53 2.77 2.62 2.71 2.93 3.14 3.36 3.26 

55k 2.05 2.29 2.19 2.29 2.38 2.51 2.65 2.59 2.71 2.79 2.76 3.05 2.91 2.99 3.21 3.43 3.65 3.62 

60k 2.23 2.49 2.37 2.48 2.59 2.74 2.87 2.79 2.94 3.08 3.06 3.34 3.22 3.31 3.59 3.8 4.03 3.99 

65k 2.42 2.7 2.59 2.69 2.8 2.97 3.11 3.01 3.16 3.29 3.28 3.57 3.44 3.52 3.79 4 4.31 4.24 

70k 2.6 2.91 2.79 2.9 3.02 3.2 3.39 3.25 3.4 3.56 3.58 3.9 3.72 3.86 4.14 4.32 4.69 4.6 

75k 2.79 3.12 3 3.1 3.24 3.42 3.61 3.47 3.67 3.8 3.8 4.13 3.95 4.11 4.38 4.61 5 4.94 

80k 2.98 3.33 3.18 3.3 3.46 3.65 3.88 3.7 3.9 4.05 4.05 4.42 4.24 4.4 4.72 4.92 5.39 5.23 

85k 3.18 3.54 3.41 3.51 3.68 3.88 4.52 3.94 4.13 5.08 4.3 6.16 4.5 4.63 5.03 5.27 5.66 5.58 

90k 3.35 3.77 3.59 3.74 3.89 4.15 4.42 4.23 4.48 4.64 4.63 5.18 4.9 5.14 5.5 5.65 6.21 6.25 

95k 3.54 4.01 3.81 3.91 4.1 4.33 4.59 4.39 4.6 4.79 4.82 5.28 5.05 5.21 5.52 5.9 6.34 6.15 

100k 3.73 4.18 3.99 4.13 4.35 4.58 4.78 4.64 4.89 5.04 5.07 5.49 5.56 5.47 5.88 6.15 6.61 6.48 
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Nonconvex clustering 

Although in general a finite mixture modeling algorithm identifies convex components, it 
could be used for modeling a nonconvex cluster by combining more than one sufficiently 
overlapping convex components. Using the mixture model parameters such as component 
locations and variances estimated by EM, an efficient methodology to model nonconvex 
clusters is described in Mitra et al26. The same technique could be applied downstream of 
FLAME skew t mixture modeling. In fact, FLAME’s use of Mahalanobis distance is 
particularly suitable for determination of overlapping components. Furthermore, formal 
modeling of skew by FLAME helps to accurately identify asymmetric components thus 
guarding against spurious overlap (as noted in the paper, spurious overlap is possible for 
symmetric Gaussian or t mixture due to skew and not any nonconvexity of data). When a 
nonconvex cluster is split into convex components, the latter are often asymmetric; 
therefore skew t distributions can naturally lead to an optimal model. Figure 4 below 
shows FLAME modeling of a simulated nonconvex sample with two pairs of overlapping 
skew t components. However, while all ingredients for modeling nonconvex clusters are 
computed by FLAME, in the present version of the package we did not include the 
modality to directly output the nonconvex clusters. An expert user can model a 
nonconvex cluster herself using a sub-mixture of multiple overlapping components based 
on the parameters estimated by FLAME where the overlap can be determined with 
Mahalanobis distance between component locations26.   

   

   (a)      (b) 
 
Figure 4. Nonconvex clustering with FLAME. A sample with 2 nonconvex clusters in 
plot (a) is modeled by FLAME with 4 skew t components as shown in plot (b). Two sub-
mixtures of skew t distributions, represented by the overlapping green-purple and red-
turquoise component-pairs in plot (b), are used for modeling of the two nonconvex 
clusters in plot (a).  
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Comparison of Box-Cox Transformation and Symmetric t with Direct Use of Skew t 
Distribution for Modeling 

Lo et al., in their method implemented in flowClust27, transform flow cytometric data to 
minimize skew and then model the transformed data with symmetric t distributions. In 
contrast our method directly models the asymmetric populations with skew t distributions 
and thus learns the distinctive shape and location of each population. In Figure 5(a) 
below, two hypothetical 1-dimensional populations with distinct shapes and modes are 
shown. The blue histogram is a right-skewed population and the brown histogram is a 
left-skewed population. Figures 5(b) and 5(c) show the Box-Cox transformed, symmetric 
t density fit of the left-skewed and the right-skewed distributions with the solid blue and 
red lines respectively. Figures 5(d) and 5(e) show the skew t density fit by FLAME of the 
left-skewed and the right-skewed distributions with the solid blue and red lines 
respectively. When the modeling results of Lo et al. and our method for the individual 
populations are superimposed, as seen in figures 5(f) and 5(g), we note that that the Box-
Cox symmetric t modeling of these two very distinct populations are almost 
indistinguishable (Figure 5(f)), whereas the two skew t modeled populations are clearly 
distinguishable in Figure 5(g). 

 
(a) 
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   (b)      (c) 

       
   (d)      (e) 

  
   (f)      (g) 

Skew t fit by FLAME 

Overlapping fit by flowClust Distinct fit by FLAME 

Box-Cox and t fit by flowClust 
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Figure 5. Comparative modeling of distinct skew populations by our method and by 
Lo et al. (a) presents our simulated data which consists of skew distributions that are 
mirror images of each other. (b) and (c) present the individual results of modeling each 
distribution using flowClust27. (d) and (e) are the solutions computed by FLAME. 
Following FlowClust modeling, when we overlay the two FlowClust solutions, we see 
that they are fitted with the same model (f): this approach therefore fails to appropriately 
distinguish the skew found in each set of data. On the other hand, in (g), we see that 
FLAME is able to accurately model the unique properties of each set of data.  
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